Methodology to evaluate the uncertainty of train exterior noise prediction

Author:

Iglesias E Latorre1ORCID,Xia J2,Farooq ME3,Bistagnino A1,Sapena J1

Affiliation:

1. Alstom, Saint-Ouen, France

2. INSA de Lyon, Villeurbanne, France

3. ENSIAME, Université de Valenciennes et du Hainaut-Cambrésis, Valenciennes, France

Abstract

Noise emissions play a key role in the development of environment-friendly rolling stock. Noise limits given by EU directives for interoperability purposes but also by internal directives of the different countries where any kind of rolling stock operates have to be respected for train approval. Exterior noise predictions are used nowadays to validate the design of new rolling stock. These predictions are used within the companies to evaluate the different design options, to optimize costs, to assess the risks and for virtual certification in cases where existing products are modified. Potentially predictions could be used in the future for a complete virtual certification of the train allowing to decrease or even to completely avoid the noise tests that are currently carried out by the train manufacturers. As a consequence, the cost of the certification process will be reduced. One of the challenges for a complete virtual certification is the assessment of uncertainties in the predictions as probably this will not be accepted by the stakeholders without a defined and validated uncertainty assessment. This work presents a methodology to estimate the uncertainty of the predictions of train noise emissions. An example of the application of the proposed framework for uncertainty evaluation is provided for a typical suburban rolling stock showing the feasibility of its use for railway exterior noise predictions but potentially also for interior noise calculations and for different applications other than railway.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a broadband metasurface sound absorber based on Hilbert fractal;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-04-05

2. Application to Real Cases of a Methodology to Evaluate the Uncertainty of Train Exterior Noise Predictions;Notes on Numerical Fluid Mechanics and Multidisciplinary Design;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3