Diagnosis methodology for identifying gearbox wear based on statistical time feature reduction

Author:

Saucedo-Dorantes Juan Jose1,Delgado-Prieto Miguel2,Osornio-Rios Roque Alfredo1,Romero-Troncoso Rene de Jesus3

Affiliation:

1. CA Mecatronica, Facultad de Ingenieria, Universidad Autonoma de Queretaro, San Juan del Rio, Mexico

2. Technical University of Catalonia (UPC), Department of Electronic Engineering, MCIA Research Center, Terrassa, Spain

3. CA Procesamiento Digital de Señales, CA Telematica, Division de Ingenierias, Campus Irapuato-Salamanca, Universidad de Guanajuato, Salamanca, Mexico

Abstract

Strategies for condition monitoring are relevant to improve the operation safety and to ensure the efficiency of all the equipment used in industrial applications. The feature selection and feature extraction are suitable processing stages considered in many condition monitoring schemes to obtain high performance. Aiming to address this issue, this work proposes a new diagnosis methodology based on a multi-stage feature reduction approach for identifying different levels of uniform wear in a gearbox. The proposed multi-stage feature reduction approach involves a feature selection and a feature extraction ensuring the proper application of a high-performance signal processing over a set of acquired measurements of vibration. The methodology is performed successively; first, the acquired vibration signals are characterized by calculating a set of statistical time-based features. Second, a feature selection is done by performing an analysis of the Fisher score. Third, a feature extraction is realized by means of the linear discriminant analysis technique. Finally, fourth, the diagnosis of the considered faults is done by means of a fuzzy-based classifier. The effectiveness and performance of the proposed diagnosis methodology are evaluated by considering a complete data set of experimental test, making the proposed methodology suitable to be applied in industrial applications with power transmission systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3