Energy harvesting for powering wireless sensor networks in low-frequency and large-force environments

Author:

Jiang Xuezheng1,Wang Jiong2,Li Yancheng3,Li Jianchun3,Yao Jin1

Affiliation:

1. School of Manufacturing Science and Engineering, Sichuan University, Chengdu, China

2. School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing, China

3. Centre for Built Infrastructure Research, Faculty of Engineering and Information Technology, University of Technology, Sydney, Australia

Abstract

Over the past few decades, wireless sensor networks have been widely used in the field of structure health monitoring of civil, mechanical, and aerospace systems. Currently, most wireless sensor networks are battery powered and it is costly and unsustainable for maintenance because of the requirement for frequent battery replacements. As an attempt to address such issue, this paper theoretically and experimentally studies a compression-based piezoelectric energy harvester, which is suitable for the low-frequency and large-force working environments, such as in civil and transportation infrastructure applications. The proposed energy harvester employs the piezoelectric structure constructed in multilayer stack configuration to convert ambient vibrations into electrical energy. Based on the linear theory of piezoelectricity, the two-degree-of-freedom electromechanical models of the proposed energy harvester were developed to characterize its performance in generating electrical energy under external excitations. Exact closed-form expressions of the electromechanical models have been derived to analyze the maximum harvested power and the optimal resistance. The theoretical analyses were validated through several experiments for a test prototype under harmonic excitations. The test results exhibit very good agreement with the analytical analyses and numerical simulations for a range of resistive loads and input excitation levels.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3