Understanding the effect of tool geometrical aspects on intensity of mixing and void formation in friction stir process

Author:

Malik Vinayak1ORCID,Kailas Satish V1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India

Abstract

The reduction of agglomeration of particulate reinforcement in friction stir processing and elimination of joint line remnant in friction stir welding depends on stirring ability of friction stir tool. The magnitude of stirring is indicated by the intensity of material inter-mixing in tool interacted region. Present investigations analyse the influence of geometrical aspects of classical friction stir tool on the intensity of material intermixing, location of high stir regions and void formation during the steady-state phase of friction stir welding. The classical tool was chosen as its geometrical features undergo minimal wear in the harsher processing environment. Investigating material mixing using metallic inserts have their shortcomings due to different flow properties of insert/marker and parent material. Therefore, bi-colour plasticine configuration possessing primary colours was adopted to understand the level of intermixing. The hue attribute of the generated secondary colour was utilised to identify and quantify material mixing. Experimental results revealed that the pin diameter positively influenced mixing and negatively affected void formation. Shoulder size and pin taper angle aided in the closure of void with inferior mixing. The intensity of mixing enhances on selection of tools possessing a shoulder to pin diameter ratio of 2.5. Finite element simulation studies were conducted to understand the reasons for mixing under certain tooling conditions. Since material subjected to stirring is concentrated primarily on a portion of advancing side, components of shear strain, shear strain rates, shear stress and velocity were tracked for this portion of processed material during its interaction with tool pin for one complete rotation.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3