Novel finite-time adaptive sliding mode tracking control for disturbed mechanical systems

Author:

Yao Qijia1ORCID,Jahanshahi Hadi2

Affiliation:

1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China

2. Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada

Abstract

In this paper, the finite-time tracking control problem of mechanical systems subject to model uncertainties and external disturbances is investigated. A new type of finite-time adaptive sliding mode control approach is proposed based on a novel integral sliding mode surface and a novel parametric adaptation mechanism. The integral sliding mode surface is originally designed by utilizing the adding a power integrator technique. The parametric adaptation mechanism is developed by using a single adaptive updating law to estimate the square of the upper bound of the lumped uncertain term. As compared with the most existing studies, the distinctive features of the proposed controller are threefold. (1) Benefiting from the novel integral sliding mode surface, the proposed controller has no singularity problem inherently existing in the terminal sliding mode control. (2) Owing to the use of novel parametric adaptation mechanism, the proposed controller is smooth and the unexpected chattering phenomenon is significantly attenuated. Moreover, the proposed controller is structurally simple and requires relatively few online calculations, which makes it affordable for practical applications. (3) The practical finite-time stability of the overall closed-loop system is strictly proved. The proposed controller can ensure the position and velocity tracking errors stabilize to the adjustable small neighborhoods around the origin in finite time. Lastly, the effectiveness and advantages of the proposed control approach are illustrated through simulations and comparisons.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3