Band gap optimization of one-dimension elastic waveguides using spatial Fourier plane wave expansion coefficients

Author:

Lima Vinícius D1,Villani Luis GG12ORCID,Camino Juan F1,Arruda José RF1

Affiliation:

1. School of Mechanical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil

2. Department of Mechanical Engineering, Federal University of Espírito Santo (UFES), Vitória, ES, Brazil

Abstract

Periodic elastic waveguides, such as rods, beams, and shafts, exhibit frequency bands where wave reflections at impedance discontinuities cause strong wave attenuation by Bragg scattering. Such frequency bands are known as stop bands or band gaps. This work presents a shape optimization technique for one-dimensional periodic structures. The proposed approach, which aims to maximize the width of the first band gap, uses as tuning parameters the spatial Fourier coefficients that describe the shape of the cell cross-section variation along its length. Since the optimization problem is formulated in terms of Fourier coefficients, it can be directly applied to the Plane Wave Expansion (PWE) method, commonly used to obtain the dispersion diagrams, which indicate the presence of band gaps. The proposed technique is used to optimize the shape of a straight bar with both solid and hollow circular cross-sections. First, the optimization is performed using the elementary rod, the Euler-Bernoulli and Timoshenko beam, and the shaft theoretical models in an independent way. Then, the optimization is conducted to obtain a complete band gap in the dispersion diagrams, which includes the three wave types, i.e., longitudinal, bending, and torsional. All numerical results provided feasible shapes that generate wide stop bands in the dispersion diagrams. The proposed technique can be extended to two- and three-dimensional periodic frame structures, and can also be adapted for different classes of cost functions.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3