Research on mathematical modeling of the servo valve torque motor considering the variation of working air-gaps leakage flux

Author:

Meng Lingkang1ORCID,Zhu Yuchuan1ORCID,Ling Jie1,Ding Jianjun2,Chen Zhichuang1,Chen Xiaoming1ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Shanghai Hunter Hydraulic Control Technology Limited Company, Shanghai, China

Abstract

In the current research of the magnetic circuit model of the servo valve torque motor, the magnetic flux leaking from working air-gaps is regarded as constant. However, the working air-gaps leakage flux varies with the armature rotation angle, which affects the accuracy of the existing mathematical model of the torque motor. To solve this problem, a new mathematical model of the torque motor with two working air-gaps is built. First, different from the previous model, the variation of the working air-gaps leakage flux is considered in the magnetic circuit model. A more detailed mathematical model of the torque motor is established based on the magnetic circuit model. Second, the finite element method is used to reveal that there is a linear relationship between working air-gaps leakage flux and armature rotation angle in a certain range of rotation angles. Then, the new model is validated by numerical calculation, which indicates that the theoretical results calculated by this new model show better agreement with the simulation results compared to the previous model when the armature rotation angle increases. Further, the theoretical results of the electromagnetic torque constant and magnetic spring stiffness acquired by the new model and the previous model are compared. The comparison shows that the variation of the working air-gaps leakage flux has the greatest influence on the magnetic spring stiffness. Finally, the experiments on the torque motor are conducted to verify the accuracy of the new model. The theoretical results obtained by this new model are better consistent with the experimental results than that obtained by the previous model. This study shows that considering the variation of working air-gaps leakage flux is valuable to improve the accuracy of the magnetic circuit model of the torque motor, which provides an effective guidance for the structural optimization and performance prediction of the torque motor.

Funder

National Key Laboratory of Science and Technology on Helicopter Transmission (Nanjing University of Aeronautics and Astronautics), China

National Natural Science Foundation of China

Postgraduate Research and Practice Innovation Program of Jiangsu Province, China

Innovation Program of Shanghai Hunter Hydraulic Control Technology Limited Company

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3