Optimal design of helical flute of irregular tooth end milling cutter based on particle swarm optimization algorithm

Author:

Yu Haibin1,Zheng Minli1,Zhang Wei1,Nie Wanying1ORCID,Bian Tianchen1

Affiliation:

1. College of Mechanical and Power Engineering, Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin University of Science and Technology, Harbin, China

Abstract

Due to the variable pitch angle and helix angle of the irregular tooth end milling cutter, the mass of the integral end milling cutter is eccentric, and the high stability and precision design of the irregular tooth end milling cutter is still a challenge. Aiming at the influence of dynamic balance of irregular tooth end milling cutter which can not be ignored in high-speed milling, the parameterized design of radial section of irregular tooth end milling cutter was carried out. Based on the space transformation law of the centroid of helical flute, a new method for calculating the centroid coordinate of end milling cutter was put forward, and a general mathematical model of eccentricity of integral end milling cutter was given. It was proved that this model could accurately calculate the centroid position and eccentricity of the end milling cutter. The influence of pitch difference angle and helix difference angle on eccentricity of end milling cutter was studied and analyzed. The particle swarm optimization (PSO) algorithm was creatively applied to optimize the helical flute shape of the end milling cutter, the curvature radius of helical flute curve is optimized, so that the centroid coordinate is infinitely close to the origin of coordinate. The number of iterations was set to 200. In the 32nd iteration, the result approached to infinitesimal, the final function converged, and obtained the groove curvature radius of the milling cuter with the smallest eccentricity. The optimized eccentricity of the end milling cutter is infinitesimal, which can make the vibration damping performance of the end milling cutter be fully developed. On the basis of ensuring the same cutting performance, the cutting tool unbalance was effectively reduced and the dynamic performance of milling cutter was further improved.

Funder

Central Government

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3