An investigation into the static response of fiber-reinforced open conical shell panels considering various types of orthotropy

Author:

Maleki S1,Tahani M12

Affiliation:

1. Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

Abstract

In this study, bending of composite open conical shell panels subjected to various distributed mechanical loads with various types of orthotropy is investigated. The stiffness coefficients are assumed to be functions of the meridional and circumferential coordinates in panels, which are produced by various methods for the realistic applications. In the first case of orthotropic open conical shell panels, the orientation of fibers are assumed to be in the meridional and circumferential directions. The stiffness coefficients of this type of fiber-reinforced panel are usually assumed to be constant. It is shown that due to the geometry of the conical surface, thickness of laminate will be changed along the meridional direction. The effect of stiffness variation on the response of panel is considered for the first time. In the case of open conical shell panel, which is fabricated by molding the prepreg layers around a conical-shaped mandrel, angle between fibers and meridional lines and, consequently, stiffness coefficients are assumed to be functions of the circumferential coordinates. In the third type, open conical shell panel can be made by cutting from a filament wound circular conical shell. In this case, thickness and ply orientation are functions of the shell coordinates. In this article, different path definitions for variable stiffness filament wound shells are considered. The inclusion of this geometric complicating effect in static analysis will add considerably to the complication and cost of a solution scheme. This article presents some results to show when these assumptions have a significant effect on the end result. The governing equations are based on the first-order shear deformation theory. The governing equations are discretized at whole domain grid points, and the boundary conditions are implemented exactly at boundary grid points using the generalized differential quadrature method. Application of the generalized differential quadrature to the governing equations, solution domain and boundary conditions leads to a system of algebraic equations. Various combinations of clamped, simply supported and free boundary conditions are implemented. It is found that the present method can accurately analyze fiber-reinforced open conical shell panels with various types of orthotropy.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3