Multi-fault classification based on the two-stage evolutionary extreme learning machine and improved artificial bee colony algorithm

Author:

Xiao Jian1,Zhou Jianzhong1,Li Chaoshun1,Xiao Han1,Zhang Weibo1,Zhu Wenlong1

Affiliation:

1. College of Hydropower and Information Engineering, Huazhong University of Science and Technology, PR China

Abstract

Extreme Learning Machine (ELM) is a novel single-hidden-layer feed forward neural network with fast learning speed and better generalization performance compared with the traditional gradient-based learning algorithms. However, ELM has two issues: the hidden node number of ELM needs to be predefined and the random determination of the input weights and hidden biases lead to ill-condition problem. In this paper, a two-stage evolutionary extreme learning machine (TSE-ELM) algorithm was proposed to overcome the drawbacks of original ELM, which used an improved artificial bee colony (ABC) algorithm to optimize the input weights and hidden biases. The proposed TSE-ELM algorithm was applied on the UCI benchmark datasets and rolling bearing fault diagnosis. The numerical experimental results demonstrated that TSE-ELM had an improved generalization performance than traditional ELM and other evolutionary ELMs.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3