Effects of electro-discharge machining process on ultra-fined grain copper

Author:

Mahdieh Mohammad Sajjad1ORCID,Zare-Reisabadi Sara2

Affiliation:

1. Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2. Department of Industrial Engineering, Persian Gulf University, Bushehr, Iran

Abstract

Copper alloys, due to their proper ductility, proper thermal conductivity and low electrical resistivity, are very applicable in various industries. Ultra-fined grain materials undergo severe plastic deformation processes, in which the microstructure of the material is drastically changed as well as enhancing the level of the energy stored in the grain boundaries. These processes such as equal channel angular pressing, considerably change the material's properties including strength and hardness. Although some specifications of the ultra-fined grain copper obtained via equal channel angular pressing process is improved, the high level of stored energy makes it thermodynamically unstable and susceptible to microstructural changes during secondary thermo-mechanical processes. In the present paper, the effects of the electro-discharge machining on the ultra-fined grain copper alloy has been studied, and the results have been compared with coarse grain copper. The thickness of the recast layer and heat affected zone of the electro-discharge machined samples was investigated as well as the cracks density and the micro-hardness through optical microscopy, scanning electron microscopy and micro-hardness tester. The results show that the ultra-fined grain samples have thicker recast layer and heat affected zone and higher cracks density, comparing to coarse grain samples. However, the micro-hardness of the electro-discharge machined surface of both groups is approximately identical.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of machining operations on mechanical properties, surface integrity and corrosion resistance of tungsten heavy alloy;Materials Today Communications;2023-12

2. Improving surface integrity of electrical discharge machined ultra-fined grain Al-2017 by applying RC-type generator;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2023-09-20

3. Experimental investigation on machining of multiple micro-square holes;Materials and Manufacturing Processes;2022-11-24

4. Research of Geometric Accuracy of Circular Holes Machined by Wire EDM Technology;Tehnicki vjesnik - Technical Gazette;2021-10-05

5. The surface integrity of ultra-fine grain steel, Electrical discharge machined using Iso-pulse and resistance–capacitance-type generator;Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications;2020-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3