An approach of calculation on sliding friction power losses in involute helical gears with modification

Author:

Wang Cheng1,Cui Huan Yong1,Zhang Qing Ping1,Wang Wen Ming1

Affiliation:

1. School of Mechanical Engineering, University of Jinan, Jinan, China

Abstract

Sliding friction between the teeth is recognized as one of the main reasons of power losses in transmission as well as a potential reason of vibration and noise. A new approach is proposed to accurately calculate the sliding friction power losses in involute helical gears considered modification and geometric deviations resulting from the manufacturing processes, assembly errors, and deflections of support structures based on the simulation of gear mesh under light and significant load. Firstly, the paths of contact points on the pinion tooth surface are obtained from tooth contact analysis. Tooth surface load distributions and loaded transmission errors in one mesh period are obtained from loaded tooth contact analysis. Secondly, tooth surface load distributions are converted into the normal forces of tooth surface points of contact, loaded transmission errors are brought to the calculation formulas of sliding velocity, and the sliding friction coefficients of tooth surface points of contact are calculated by a non-Newtonian thermal elastohydrodynamic lubrication model. Substituting the sliding velocities, the normal forces, and the sliding friction coefficients into the power calculation formulas gives the sliding friction power losses of tooth surface points of contact. By the soft MATLAB, the values of the sliding friction power losses are integrated and the sliding friction power loss in helical gears from engagement to disengagement is obtained. Finally, an example of this approach is shown in the end. The results indicate that it is very necessary to consider the influence of loaded transmission errors for calculation of sliding friction power losses.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Minimum Friction Losses in Planetary Stages of Wind Turbine Gearboxes;Mathematical Problems in Engineering;2022-10-04

2. Mathematical design and meshing analysis of a new internal gear transmission based on spatial involute-helix curve;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-08-16

3. Load share model based gear loss factor prediction in high contact ratio spur gear drive;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2022-06-20

4. Load distribution analysis considering corner contact effects to predict the mechanical efficiency of spur gears;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-03-22

5. A Method for Calculating Elliptic Gear Transmission Efficiency Based on Transmission Experiment;Strojniški vestnik – Journal of Mechanical Engineering;2021-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3