Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: A higher-order finite-boundary element approach

Author:

Sharma Nitin1,Mahapatra Trupti Ranjan2ORCID,Panda Subrata Kumar3

Affiliation:

1. School of Mechanical Engineering, KIIT University, Bhubaneswar, Odisha, India

2. Department of Production Engineering, Veer Surendra Sai University of Technology (VSSUT), Burla, Odisha, India

3. Department of Mechanical Engineering, National Institute of Technology, Rourkela, Odisha, India

Abstract

In this article, the vibration-induced acoustic responses of laminated composite flat panels subjected to harmonic mechanical excitation under uniform temperature load are investigated numerically. The natural frequencies alongside corresponding modes of the flat panels resting on an infinite rigid baffle are obtained by using finite element method in the framework of the higher-order shear deformation theory. A coupled finite and boundary element formulation is then employed to acquire the acoustic responses. The governing equation for the sound radiaiton from the vibrating structures is derived by solving the Helmholtz wave equation. The vibration and acoustic responses are computed by using the present scheme via an in-house computer code developed in MATLAB environment. In order to avoid any excess thermal loading conditions first, the critical buckling temperature of the panel structure is obtained and authenticated with the benchmark values. Further, the sound power levels for isotropic and laminated composite panels are computed using the present scheme and validated with the existing results in the published literature. Finally, the influence of lamination scheme, support conditions and modular ratio on the acoustic radiation behavior of laminated composite flat panels in an elevated thermal environment is studied through various numerical examples. The thermal load is found to have substantial influence on the stiffness of the panels and the peaks in the free vibration responses tend to shift to lower frequencies for higher temperatures. It is also inferred that the panels radiate less efficiently whereas the overall sound pressure level is found to follow an increasing trend with increasing temperature.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3