Inverse procedure for mechanical characterization of multi-layered non-rigid composite parts with applications to the assembly process

Author:

Vu Ngoc-Hung1ORCID,Pham Xuan-Tan1,François Vincent2,Cuillière Jean-Christophe2

Affiliation:

1. Department of Mechanical Engineering, École de Technologie Supérieure (ÉTS), Montréal, QC, Canada

2. Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada

Abstract

In assembly process, non-rigid parts in free-state may have different forms compared to the designed model caused by gravity load and residual stresses. For non-rigid parts made by multi-layered fiber-reinforced thermoplastic composites, this process becomes much more complex due to the nonlinear behavior of the material. This paper presented an inverse procedure for characterizing large anisotropic deformation behavior of four-layered, carbon fiber-reinforced polyphenylene sulphide, non-rigid composite parts. Mechanical responses were measured from the standard three points bending test and the surface displacements of composite plates under flexural loading test. An orthotropic hyperelastic material model was implemented as a UMAT user routine in the Abaqus/Standard to analyze the behavior of flexible fiber-reinforced thermoplastic composites. Error functions were defined by subtracting the experimental data from the numerical mechanical responses. Minimizing the error functions helps to identify the material parameters. These optimal parameters were validated for the case of an eight-layered composite material.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3