Affiliation:
1. Department of Naval Architecture and Ocean Engineering, Hongik University, Sejong, Korea
Abstract
The numerical calculation of stress intensity factors of two-dimensional functionally graded materials is introduced by an enriched Petrov–Galerkin natural element method (enriched PG-NEM). The overall trial displacement field is basically approximated in terms of Laplace interpolation functions and it is enriched by the near-tip asymptotic displacement field. The overall strain and stress fields which were approximated by PG-NEM were smoothened and enhanced by the patch recovery. The modified interaction integral [Formula: see text] is used to evaluate the stress intensity factors of functionally graded materials with the spatially varying elastic modulus. The validity of present method is justified through the evaluation of crack-tip stress distributions and the stress intensity factors of four numerical examples. It has been found that the proposed method effectively and successfully captures the near-tip stress singularity with a remarkably improved accuracy, even with the remarkably coarse grid, when compared with an extremely fine grid and the analytical and numerical reference solutions.
Funder
National Research Foundation of Korea
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献