A twin-rotor piston engine with annular connecting chambers

Author:

Deng Hao1,Pan Cunyun1,Xu Xiaojun1,Zhang Xiang1

Affiliation:

1. College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, China

Abstract

An effort in progress to develop a new twin-rotor piston engine is described. A proposition of sealing, which benefits from the conventional piston-cylinder structure is presented. A six-stroke twin-rotor piston engine, which is designed to have coolant intake and drain stroke is proposed. A differential velocity drive mechanism, which controls the rotors’ oscillation, is invented. The differential velocity drive mechanism utilizes novel kinematic design to completely eliminate inertial loads. The twin-rotor engine is expected to have three key technical advantages for attaining higher power density than any available piston engine: the first is symmetrical structure and well-balanced kinetics; the second is 16 or more power strokes per revolution of the output shaft and more than two symmetrical working chambers exporting power at any time; the third is performing the four-stroke cycle without using the valve mechanism.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3