Affiliation:
1. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an, China
Abstract
The effects of bionic flap on airfoil performance were experimentally studied to provide theoretical support for the application of the bionic flap in aeronautical engineering. Seven kinds of bionic flaps were used to study the effects of the key flap parameters, including the flap angle, length, shape, and position, at a Reynolds number of Re = 0.8 × 106. At small angle of attacks (AoAs), the drag and pitching moment increased and the lift reduced when using the bionic flap. While at high AoAs, the lift increased and the drag reduced, which improved the airfoil stall characteristics. The configuration of deflection bionic flap had the smallest initial AoA for improving the airfoil stall characteristics in the seven kinds of bionic flaps. More than eight degrees of the effective AoA range for improving lift characteristics could be achieved. The maximum lift coefficient could be increased by 3.9%. Additionally, the control mechanisms of the flap under different flow conditions (attached flow and separated flow) were deeply studied. In the attached flow, the effective camber and thickness of the basic airfoil could be changed by the flap, resulting that the flow around the airfoil was affected, which in turn affected the Cl and the slope of the lift line. In the separated flow, the flap affected the flow around the airfoil by controlling the development of the trailing edge separation vortex. These research results confirmed the aerodynamic mechanisms for the formation of double layered feathers when birds land, and provided insight into application of bionic flaps in aeronautical engineering.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献