Multidisciplinary design optimization of stiffened panels using collaborative optimization and artificial neural network

Author:

Chagraoui Hamda1ORCID,Soula Mohamed1

Affiliation:

1. Department of Mechanical Engineering, ENSIT-Tunis University, Tunis, Tunisia

Abstract

A new method for solving the multidisciplinary design optimization problems with a minimal computational effort is presented. The proposed methodology is based on the combination of artificial neural network model and Improved Multi-Objective Collaborative Optimization. In the artificial neural network–Improved Multi-Objective Collaborative Optimization scheme, the back-propagation algorithm is used for training the artificial neural network metamodel and the Non-dominated Sorting Genetic Algorithm-II is used to search a Pareto optimality set for the objective functions of stiffened panels. The artificial neural network–Improved Multi-Objective Collaborative Optimization algorithm aims firstly to decompose the global optimization problem hierarchically into optimization design problem at system level and several sub-problems at sub-system level and secondly to replace each optimization problem at the system and subsystem levels by artificial neural network model to limit the computational cost. To highlight the efficiency and effectiveness of the proposed artificial neural network–Improved Multi-Objective Collaborative Optimization method, mathematical and engineering examples are presented. Results obtained from the application of the artificial neural network–Improved Multi-Objective Collaborative Optimization approach to an optimization problem of a stiffened panel are compared with those obtained by traditional optimization without using prediction tools. The new method (artificial neural network–Improved Multi-Objective Collaborative Optimization) was proven to be superior to traditional optimization. These results have confirmed the efficiency and effectiveness of the artificial neural network–Improved Multi-Objective Collaborative Optimization method. In addition, it converges at faster rate than traditional optimization. The traditional optimization method converges within 7918 s, while artificial neural network–Improved Multi-Objective Collaborative Optimization requires only 42 s, clearly, the artificial neural network–Improved Multi-Objective Collaborative Optimization method is much more efficient.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3