Entropy analysis of radiative [MgZn6Zr-Cu/EO] Casson hybrid nanoliquid with variant thermal conductivity along a stretching surface: Implementing Keller box method

Author:

Jamshed Wasim1ORCID,Mohd Nasir Nor Ain Azeany2,Brahmia Ameni3,Nisar Kottakkaran Sooppy4ORCID,Eid Mohamed R.56ORCID

Affiliation:

1. Department of Mathematics, Capital University of Science and Technology (CUST), Islamabad, Pakistan

2. Department of Mathematics, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia

3. Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia

4. Department of Mathematics, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, Saudi Arabia

5. Department of Mathematics, Faculty of Science, New Valley University, Al-Wadi Al-Gadid, Egypt

6. Department of Mathematics, Faculty of Science, Northern Border University, Arar, Saudi Arabia

Abstract

Heat transfer is critical due to its broad application in a variety of industries. New hybrid nanofluids are being used to improve the heat transfer competencies of ordinary fluids and have an enormous exponent heat than nanofluids. Hybrid nanofluids, a novel form of nanofluid, are being utilized to improve the heat transfer capacities of regular fluids and have a more outstanding heat exponent than nanofluids. Two-element nanoparticles submerged in a base fluid make up the hybrid nanofluids. Flow and heat transport properties of a hybrid nanofluid across a slick surface are studied in this study. Nanoparticle shape analysis, porous media, thermal conductance variations, and thermal radiative effects are all part of the process. A numerical approach called the Keller box method is used to solve the governing equations numerically. EO-Engine Oil has been used as a rich, viscous base fluid in this study, and a Cason hybrid nanofluid was examined. This fluid contains two diverse forms of nanoparticles: Copper (Cu) and Magnesium Zinc Zirconium alloy (MgZn6Zr). Compared to standard Cu-EO nanofluids, the heat transmission level of such a fluid (MgZn6Zr-Cu/EO) has steadily increased, which is an important finding from this study. The boundary-lamina-shaped layer's components have the highest thermal conductivity, while sphere-shaped nanoparticles have the lowest. When nanoparticles are assimilated, the entropy of the system increases by a factor of three: their ratio by fractional size, their radiative properties, and their thermal conductivity variations.

Funder

King Khalid University

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3