Compound sliding-mode predictive control for a temperature system of high-speed heat-airflow wind tunnel

Author:

Cai Chaozhi1,Li Yunhua1,Dong Sujun1

Affiliation:

1. Division 303, School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing, China

Abstract

The mathematical model of the temperature system under the mode of the proportional throttle valve control and the variable frequency pump control is established, respectively. A compound control strategy that consists of a compensation controller and a sliding-mode predictive feedback controller is designed. The compensation controller, which takes the change of the wind speed as parameter, is used to eliminate the impact on the system caused by the change of the working conditions (wind speed); the sliding-mode predictive feedback controller is used to solve the problems in the system such as time delay, time-varying parameters and disturbance. In order to solve the problem of temperature disturbance caused by the mode switch between pump control and valve control and the oil-rich combustion phenomenon in the high-temperature case, a method takes the ramp signal in which the slope is adjustable as a temperature setting signal is proposed. The experimental results show that the designed strategy obtains a satisfactory control performance and can achieve the temperature control with fast response time and no overshoot. In addition, it takes the ramp signal in which the slope is adjustable as the temperature setting signal can achieve the undisturbed switching control of the temperature and prevent the oil-rich combustion effectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3