Additive manufacturing and topology optimization: A design strategy for a steering column mounting bracket considering overhang constraints

Author:

Mantovani Sara1ORCID,Campo Giuseppe A1,Ferrari Andrea1

Affiliation:

1. Department of Engineering ‘Enzo Ferrari’, University of Modena and Reggio Emilia, Modena, Italy

Abstract

In the present paper, the use of the topology optimization in a metal Additive Manufacturing application is discussed and applied to an automotive Body-in-White component called dash. The dash is in the front area of the Body-in-White, between the left-hand-side shock-tower and the Cross Car Beam, and its task is to support the steering column. The dash under investigation is an asymmetric rib-web aluminium casting part. The influence of Additive Manufacturing constraints together with modal and stiffness targets is investigated in view of mass reduction. The constraints drive the topology result towards a feasible and fully self-supporting Additive Manufacturing solution. A simplified finite element model of the steering column and of the Body-in-White front area is presented, and the limiting assumption of isotropic material for Additive Manufacturing is discussed. The optimization problem is solved with a gradient-based method relying on the Solid Isotropic Material with Penalization and on the RAtional Material with Penalization algorithms, considering the overhang angle constraint with given build directions. Three metals are tested: steel, aluminium and magnesium alloys. Topology optimization results with and without overhang angle constraints are discussed and compared. The aluminium solution, preferred for its lesser weight, has been preliminarily redesigned following the optimization results. The new dash concept has been validated by finite element considering stiffness, modal responses, and buckling resistance targets. The proposed dash design weighs 721 g compared to the 1537 g of the reference dash, with a weight reduction of 53%, for the same structural targets.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3