Modeling of temporary cavity in ballistic gelatin based on spherical cavity expansion model

Author:

Liu Li1ORCID,Yang Xiao-Yi12ORCID,Huang Yu1,Wang Peng-Fei1ORCID,Zuo Qiang1ORCID

Affiliation:

1. Department of Mechanical Engineering, Hangzhou City University, Hangzhou, China

2. Key Laboratory of Special Purpose Equipment and Advanced Manufacturing Technology, Ministry of Education & Zhejiang Province, Zhejiang University of Technology, Hangzhou, China

Abstract

To investigate the expansion mechanism of the temporary cavity produced by high-speed penetrators into ballistic gelatin, a dynamic spherical-cavity-expansion model for gelatin targets was proposed with consideration of the outer boundary size. The theoretical solution of the cavity radial stress was obtained and the energy conversion and conservation relation during the cavity expansion process was established. The influence of the finite boundary to the solutions of the cavity radial stress and the deformation energy in the medium was analyzed. The energy conversion and conservation relation was applied to penetration process of high-speed penetrators into soft targets and regarded as the temporary cavity expansion model. This model is a nonlinear first order differential equation about the cavity radius, which can be solved numerically to obtain the variation of temporary cavity volume with time. Experimental results of high-speed penetrators (bullets and fragment simulating projectile with different shapes) penetrating into ballistic gelatin were analyzed. Temporary cavity results of rhombic fragment simulating projectiles were used to estimate the parameters in the model. Then, model predictions were compared with the temporary cavity results of bullets, spheres and cylinders to verify the reliability of the model. It was found that: (1) if the ratio of the cavity radius to the initial target boundary radius exceeds 0.62, the error caused by ignoring the boundary size effect will exceed 10%; (2) Model predictions for temporary cavity volume of penetration produced by various penetrators are shown to be in good agreement with the corresponding experimental results.

Funder

Zhejiang University City College Scientific Research Foundation for Teachers

Hangzhou Agriculture and Social Development Projects

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3