Affiliation:
1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, PR China
2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan, PR China
Abstract
The aerodynamic devices play an important role on the performance of the Formula SAE racing car. The rear wing is the most significant and popular element, which offers primary down force and optimizes the wake. In traditional rear wing optimization, the optimization variables are first selected, and separately enumerated according to the analyzing experience of the racing car’s external flow field, and thus the optimal design is chosen by comparison. This method is complicated, and even might lose some key sample points. In this paper, the attack angle of the rear wing and the relative position parameters are set as design variables; then the design variables’ combination is determined by the DOE experimental design method. The aerodynamic lift and drag of the racing car for these variables’ combinations are obtained by the computational fluid dynamics method. With these sample points, the approximation model is produced by the response surface method. For the sake of gaining the best lift to drag ( FL/ FD) ratio, i.e. maximum down force and the minimum drag force, the optimal solution is found by the genetic algorithm. The result shows that the established optimization procedure can optimize the rear wing’s aerodynamic characteristic on the racing car effectively and have application values in the practical engineering.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献