Dynamic modeling and harmonic analysis of surface-mounted three-phase AC permanent magnet synchronous motor

Author:

Zhang Wei12ORCID,Zhang Xing1ORCID,Jin Xiaoliang2,Zhang Huijie1ORCID,Zhao Wanhua1ORCID

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

2. Department of Mechanical Engineering, The University of British Columbia, Vancouver, BC, Canada

Abstract

CNC machine tools have high requirements for precision and smoothness of motion. As the power source, the performance of the servo motor has a significant impact on the movement of the machine tool. Harmonic is a common phenomenon in motors, which brings adverse effects on the performance of the motor, even the whole machine and the machined parts. Therefore, it’s of great significance to study the source, characteristics, and influencing factors of the harmonics. In this paper, the time domain modeling, simulation, and analysis are carried out for the harmonic phenomenon of the surface-mounted 3-phase AC permanent magnet synchronous motor (PMSM). Firstly, a dynamic model of the servo motor integrated with its control and driving system is established under ideal conditions, and the simulation of the motor running state is realized in the time domain. On this basis, the modeling and simulation are carried out for the inverter dead-zone, cogging torque, rotor mixed-eccentricity, and 3-phase asymmetry, respectively, and the frequency components of the harmonics caused by these factors are obtained. Finally, the influence of load and motor rotational velocity on 3-phase current and torque harmonics is analyzed, and the interactions between the inverter and the motor are investigated. The results show that the inverter and the motor are coupled to each other as an integrated system, and they have impacts on each other. The established model is verified by experiments.

Funder

KeyArea Research and Development Program of Guangdong Province

China Scholarship Council

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3