A multi-objective optimization method based on NSGA-II algorithm and entropy weighted TOPSIS for fuzzy active seat suspension of articulated truck semi-trailer

Author:

Gheibollahi Hamid1ORCID,Masih-Tehrani Masoud1ORCID

Affiliation:

1. Vehicle Dynamical System Research Lab, School of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

This paper aims to optimize a fuzzy logic controller (FLC) active seat suspension applied to an articulated truck semi-trailer seat to improve ride comfort considering the energy consumption of the controller. The proposed truck model is a linear truck with 13 degree-of-freedom (DOF). Two objective functions are defined seat root mean square (RMS) acceleration related to ride comfort and controller RMS force pertaining to the energy consumption of the controller. The Pareto Front is obtained for these two objective functions using the multi-objective optimization method in MATLAB. The optimization is based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II), which has been proposed as a powerful decision space exploration engine based on a genetic algorithm (GA) for solving a multi-objective function problem. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), which is simple and effective, selects a set of optimal controller parameters. In addition, considering the changes of effective parameters in the truck, including trailer load and location, tyres’ stiffness and the driver’s mass, has been investigated to provide Monte Carlo sensitivity analysis of these parameters on objective functions. Finally, using ISO 2631-1, the ride comfort and controller required force levels before and after optimization are compared. The results of this optimization indicate a significant improvement in ride comfort and controller force which has been different in various conditions of truck speed and road classes. The results have shown that the maximum amount of improvement in ride comfort is about 25% which happens on Class-C road (at the truck speed of 60 km/h), and the control force reduction peaks at around 60%, which occurs on Class-A road (at the truck speed of 60 km/h). The simulation is validated by MSC-ADAMS software.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3