An analytical approach on nonlinear mechanical and thermal post-buckling of nanocomposite double-curved shallow shells reinforced by carbon nanotubes

Author:

Duc Nguyen Dinh123ORCID,Nguyen Pham Dinh1,Cuong Nguyen Huy1,Van Sy Nguyen1,Khoa Nguyen Dinh1

Affiliation:

1. Advanced Materials and Structures Laboratory, VNU University of Engineering and Technology (UET), Hanoi, Vietnam

2. Infrastructure Engineering Program – VNU-Hanoi, Vietnam-Japan University (VJU), Hanoi, Vietnam

3. National Research Laboratory, Department of Civil and Environmental Engineering, Sejong University, Seoul, Korea

Abstract

This work presents the nonlinear mechanical and thermal post-buckling of nanocomposite double-curved shallow shells reinforced by single-walled carbon nanotubes resting on elastic foundations based on the higher order shear deformation theory with geometrical nonlinearity in von Karman–Donnell sense. The composite shells are made of various amorphous polymer matrices: poly(methyl methacrylate) (PMMA) and poly{(m-phenylenevinylene)-co-[(2,5-dioctoxy-p-phenylene) vinylene]} (PmPV). The governing equations are solved by the Galerkin method and Airy's stress function to achieve mechanical and thermal post-buckling behaviors of nanocomposite double-curved shallow shells. Various types of distributions of carbon nanotubes, both uniform distributions, and functionally graded distributions are examined. The material properties of nanocomposite double-curved shallow shells are assumed to be temperature dependent. Detailed parametric studies are carried out on the effect of various types of distribution and volume fractions of carbon nanotubes, temperature increments, elastic foundations, edge to radius and edge to thickness ratios on the nonlinear mechanical and thermal post-buckling of nanocomposite double-curved shallow shells reinforced by CNTs.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3