Mathematical modeling and experimental investigation of a composite beam failure - Case study

Author:

Milic Milica1ORCID,Svorcan Jelena1,Zoric Nemanja1,Atanasovska Ivana2,Momcilovic Dejan3

Affiliation:

1. Faculty of Mechanical Engineering, University of Belgrade, Belgrade, Serbia

2. Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia

3. Institute for Testing of Materials IMS, Belgrade, Serbia

Abstract

Composite materials have been extensively employed in the aviation industry in recent years. The application of new materials enables significant weight savings with improved mechanical characteristics. This is also very important in the field of development of unmanned aerial vehicles (UAV). In the design phases, it is necessary to perceive all the aspects that are important for the structure and consider different load cases. The relationship between weight and strength proved to be important. This means that detailed strength analyses of each structural part are indispensable. In particular, primary load-bearing structures must sustain all types of loads without fail. Failure of the structure can affect the motion of the UAV during the mission or lead to a crash and significant losses. This paper presents the research performed on the failure analysis of a composite beam of a novel UAV. During the testing phase, under an unpredictable load condition followed by a crash landing, failure of the structure occurred on a beam element. The study was performed to determine the cause of the failure of certain layers of the composite laminate, because the previous calculation showed that it met the criteria for which it was dimensioned. Based on the telemetry data and the impact load that was registered, a complementary numerical and experimental analyses were performed to determine what happened and why. Composite test specimens were extracted from the beam and subjected to standard tensile tests, in order to determine the actual mechanical characteristics of the layered material. The paper presents in detail the comparison of the results as well as the methodology used in this research.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3