Effect of welding parameters on bead characteristics and mechanical properties of wire and arc additive manufactured inconel 718

Author:

Kumar Parveen1,Singh Ratnesh Kumar Raj1ORCID,Sharma Satish Kumar1ORCID

Affiliation:

1. Thapar Institute of Engineering & Technology, Patiala, India

Abstract

In this study, a bi-directional, low-cost, gas metal arc welding (GMAW) based wire arc additive manufacturing (WAAM) setup is used to deposit aerospace-grade super-alloy IN718. The orthogonally designed experiments are carried out to optimize process parameters for bead geometry characteristics. Study result shows that with an increase in heat input, the bead parameters like bead width, reinforcement, dilution, penetration, and weld form factor are increasing, while it has a detrimental effect on weld shape factor and wetting angle. Microstructural examination reveals that at high heat input, coarser grain structure having average grain size of 72.29 µm is obtained while at low heat input, a finer grain structure with average grain size of 32.12 µm along with smaller amount of Laves phases are present. The XRD reveals NbC and TiC phases present in case of low heat input sample which enhances the mechanical properties of deposited material. The multilayer wall structures fabricated at high heat input showed more uniformity in shape with lesser waviness than that fabricated with low heat input. The tensile result of low heat input sample (775.82 MPa) shows higher strength than high heat input sample (741.07 MPa) which is because of smaller grain structure and higher hardness (278.11 HV) as obtained in low heat input sample as compared to high heat input sample (257.26 HV). The EBSD analysis also confirms highly textured surface, more grain boundary lengths and larger grain boundary orientation in low heat input sample imparted better mechanical properties.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3