Experimental study on critical heat flux during flow boiling of R134a in a vertical helically coiled tube

Author:

Niu Xiaojuan12,Yuan Huaijie2,Zhao Liang2

Affiliation:

1. School of Energy and Power Engineering, Northeast Electric Power University, Jilin, China

2. State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China

Abstract

This paper carried out an experimental study on the critical heat flux during flow boiling of R134a in a vertical helically coiled tube. The length, inner diameter, coil diameter, and pitch of the test tube were 1.85 m, 8 mm, 205 mm, and 25 mm, respectively. Experiments cover the mass flux range of 190–400 kg·m−2·s−1, heat flux of 15–55 kW·m−2, inlet pressure of 0.8–1.1 MPa, and inlet vapor quality of 0.01–0.35. The effects of critical heat flux identification method, mass flux, system pressure, and inlet vapor quality on critical heat flux were presented. The critical heat flux obtained by the wall temperature rise method was larger than that obtained by the wall temperature oscillation method. The deviation of the critical heat flux corresponding to two methods, including wall temperature rises sharply above 10 ℃ and wall temperature drastic oscillation, was about 20% under the present experimental conditions. The critical heat flux increased with mass flux while it decreased with the inlet vapor quality and pressure. The experiment data were compared with four existing empirical correlations. A new correlation is proposed for critical heat flux prediction in vertical helical tubes.

Funder

China National Key Research and Development Plan Project

Jilin Province Science and Technology Development Plan Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3