Numerical study on mean flow field of turbulent dual offset jet

Author:

Mondal Tanmoy1,Pramanik Shantanu2

Affiliation:

1. Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh, India

2. Department of Mechanical Engineering, National Institute of Technology Durgapur, West Bengal, India

Abstract

A numerical investigation on the mean flow and turbulence characteristics of dual offset jet for various separation distances between the two jets with a fixed offset height of the lower jet from the bottom wall is reported in this study. The numerical simulations have been performed by solving the Reynolds-averaged Navier-Stokes equations (RANS) with two-equation standard [Formula: see text] turbulence model. The Reynolds number based on the jet width and the inlet turbulence intensity are considered as 15,000 and 5%, respectively. The computational results for the mean flow reveal that after issuing from the nozzles, the adjacent shear layers of the offset jets meet together at the merging point and then the merged jets reattaches on the bottom wall at the reattachment point before they combine together at the combined point forming a single jet flow. In the far downstream, the flow field behaves like a classical single wall jet flow. The self-similarity of mean flow field is achieved at far down stream of combined point. An increase in separation distance between the two jets [Formula: see text] results in a decrease in magnitude of the streamwise maximum velocity of the combined jet but with same rate of decay. The converging region of the jets has depicted considerable growth of turbulence as the jet centrelines bend towards the merging point. According to the mean flow results, the distances of the reattachment point and the combined point from the nozzle exit gradually increase with the progressive increase in separation distance between the two jets within the range d/ w = 3–8.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3