Modeling and performance analysis of a hybrid conventional solar still–adsorption desalination system

Author:

Abhishek P12,Baiju V1

Affiliation:

1. Energy Research Lab, Department of Mechanical Engineering, TKM College of Engineering, Kollam, India

2. APJ Abdul Kalam Technological University, Thiruvananthapuram, India

Abstract

This study presents a thermodynamic modeling and performance analysis of a hybrid desalination system consisting of a conventional solar still (CSS) and an adsorption desalination system (ADS). To evaluate the performance of the system, a small scale model of a hybrid CSS-ADS system is designed, fabricated and tested under the meteorological condition of Kollam, Kerala, India. Water productivity of the hybrid CSS-ADS, followed by, assessing the coefficient of performance of the system is also carried out. The maximum water productivity of the system is estimated as 750 ml. The proposed hybrid system is able to produce the cooling effect along with desalination during its operation. The coefficient of performance (COP) is obtained as 0.58. The performance of the system is also assessed based on the second law of thermodynamics to study exergy loss and exergy efficiency of each and every component of the system. It is observed that the main sources of exergy destruction in the hybrid system occurs in the solar still basin and adsorbent bed of ADS. The total exergy loss and exergy efficiency of the hybrid system is found to be 0.224 W and 29.6%, respectively. Variation of brine water temperature, heat transfer coefficients, water productivity of CSS and ADS are also presented in this study. The study aims at a formidable solution to the low performance of conventional solar still.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conceptual Design for Active Solar Still with an Adsorption Unit;Green Energy and Technology;2024

2. Combination of a v-grooved solar collector with a single slope solar still: Performance evaluation, mathematical modeling, and economic analysis;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3