Correlated disorder in rainbow metamaterials for vibration attenuation

Author:

Fabro AT1ORCID,Meng H2,Chronopoulos D2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Brasilia, Brasília-DF, Brazil

2. Institute for Aerospace Technology & The Composites Group, University of Nottingham, Nottingham, UK

Abstract

Metastructures are typically composed of periodic unit cells designed to present enhanced dynamic properties in which either single or multiple resonators are periodically distributed. Even though the periodic metamaterials can obtain bandgaps with outstanding vibration attenuation, the widths of bandgaps can still be narrow for some practical applications. Rainbow metamaterials have been proposed based on gradient or random profiles to provide further improved attenuation. Nonetheless, the effects of correlated random disorder on their attenuation performance remains an open challenge. This work presents an investigation on the effects of correlated disorder on the vibration attenuation of rainbow metamaterials. An analytical model using the transfer matrix approach is used to calculate the receptance functions in a finite length metastructure composed of evenly spaced non-symmetric resonators attached to a beam with Π-shaped cross-section, thus a multi-frequency metastructure. The correlated disorder is modelled using random fields and an analytical expression of the Karhunen-Loève expansion is used such that spatial correlation on the resonator properties is modified by various correlation lengths, i.e., the level of spatial smoothness. Individual samples of random fields are used to investigate the effects of the correlated disorder in the vibration attenuation of a multi-frequency metastructure. It is shown that the bandgap can be further widened when compared to uncorrelated disorder. The obtained results indicates that a combination of the gradient profile with some level of disorder, typically resulting from random fields with larger correlation lengths, tends to give improved vibration attenuation when compared to a optimized gradient rainbow metamaterial. It opens new and innovative ways for the design of broadband rainbow metastructures for vibration attenuation.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Horizon 2020 Framework Programme

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3