Characterization of erbium oxide doped HP-HVOF deposited carbide ceramic coating on martensitic steel

Author:

Vishnoi Mohit12ORCID,Murtaza Qasim1,Kumar Paras1

Affiliation:

1. Department of Mechanical Engineering, Delhi Technological University, Delhi, India

2. Department of Mechanical Engineering, JSS Academy of Technical Education, Noida, India

Abstract

Rare earth elements (REEs) are known as the “vitamin or nutrients” of metals. The addition of rare earth in a limited quantity can enhance the properties of materials. This article elucidates the effect of doping of rare earth oxide (0.9 wt.% Er2O3) on the mechanical and surface behavior of tungsten carbide (WC-10Co-4Cr) based coatings developed using high pressure high velocity oxygen fuel (HP-HVOF) thermal sprayed techniques on martensitic stainless steel (SS410). With the addition of rare earth oxides, the result shows that the hardness of the deposited coating (HV1261.17) is far higher than the substrate (HV193.47). The modulus of elasticity and flexural strength is enhanced for the coated sample as compared to the substrate. The porosity level of the coating is found to be less than 1% and the static water contact angle for coated surface (≈125.1°) shows the coated sample is hydrophobic in nature. The surface characterization was done using the scanning electron microscope attached with energy dispersive X-ray analysis which has identified the presence of various elements on the surface including rare earth. The surface of coated samples has various phases of rare earth oxides such as monoclinic and cubic rare earth oxides. Moreover, its compounds such as Co3W3C were confirmed by X-ray diffraction measurements. After comparing previous literature with current results can conclude that the addition of rare earth oxides (0.9 wt.% Er2O3) on carbide coatings enhanced the various properties of materials.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3