Numerical study on the steady-state heat transfer rate of nanofluid filled within square cavity in the presence of oriented magnetic field

Author:

Koopaee Masoud K1,Omidvar Amir1,Jelodari Iman1

Affiliation:

1. Faculty of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran

Abstract

In this paper, the steady-state natural convection in a square cavity filled with water–Al2O3 nanofluid in the presence of magnetic fields with variable inclination angles is investigated numerically. The enclosure is subjected to different side-wall temperatures while the top and bottom walls are assumed to be adiabatic. The thermal behavior of enclosure is assessed using a finite volume-based computer program. In order to ensure the accuracy of results, comparisons are also made with a previous published work. In this research, at constant magnetic field strengths, the effect of magnetic field inclination angle on the rate of heat transfer in the square cavity is investigated at the Rayleigh numbers of Ra = 103, 104, 105 and 106. In this work, the Hartmann number ranges from Ha = 0 to 120 and the solid volume fraction varies from φ = 0 to 0.06. Numerical results show that depending on the Rayleigh and Hartmann numbers, the maximum heat transfer rate may occur at magnetic field inclination angles of 45°, 60° or 90° and the effect of magnetic field inclination angle is significant at high values of Rayleigh and Hartmann numbers. It is found that addition of nano-sized solid particles causes higher heat transfer rate when Ra = 103, whereas at Rayleigh number of Ra = 106, a reverse behavior is observed. Results show that at Rayleigh numbers of Ra = 104 and 105, the effect of solid particles addition on the thermal performance of the enclosure depends on the Hartmann number. It is also shown that an increase in the inclination angle causes higher velocity within the enclosure and addition of solid particles leads to suppression of flow field.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3