An investigation of the strain rate and temperature effects on the plastic flow stress and ductile failure strain of aluminum alloys 5083-H116, 6082-T6 and a 5183 weld metal

Author:

Zhou Jun1,Hayden Matthew2,Gao Xiaosheng1

Affiliation:

1. Department of Mechanical Engineering, The University of Akron, Akron, OH, USA

2. Alloy Development and Mechanics Branch, Naval Surface Warfare Center, West Bethesda, MD, USA

Abstract

This article presents a comprehensive experimental and numerical study to investigate the effects of strain rate and temperature on flow stress and ductile failure strain of three aluminum alloys. The test matrix includes smooth and notched round tensile specimens tested at room temperature (24 ℃) and two elevated temperatures (66 ℃ and 149 ℃), and under different strain rates. For 5083-H116, three loading rates are considered at 24 ℃ and it is found that the flow stress and failure strain are lowest at the intermediate strain rate. At high strain rate, the flow stresses of 5083-H116 and 6082-T6 are higher than the quasi-static loading while the flow stress of the 5183 weld metal remains unchanged; the ductility of the 5XXX alloys shows a significant increase compared to the quasi-static loading while the ductility of 6082-T6 does not change much. The study indicates that the Johnson–Cook plasticity and fracture models can be used to describe the temperature dependencies of the flow stress and the failure strain for 6082-T6 but not the 5XXX alloys. At 66 ℃ the 5XXX alloys do not display temperature softening compared to 24 ℃ while their ductility is reduced. As temperature is elevated to 149 ℃, the flow stress of the 5XXX alloys decreases while the ductility increases. The unconventional behavior of the 5XXX alloys in certain temperature and strain rate ranges has been attributed to the dynamic strain aging effect. The study also suggests that the dependency of the failure strain on stress triaxiality can be described by the Johnson–Cook fracture model for all three materials under quasi-static loading at room temperature and the model parameters are calibrated using an inverse method combining experimental results with finite element analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3