Study on the surface quality of 60vol% SiCp/Al2024 composites with large-grained

Author:

Jin Po1,Gao Qi1ORCID,Quanzhao Wang 2,GuangYan Guo 1

Affiliation:

1. School of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, China

2. Institute of Metal Research, Chinese Academy of Science, Shenyang, Liaoning, China

Abstract

In this paper, the finite element cutting simulation model with irregular distribution of multiple particles is established, the stress and strain distribution of SiC particles in the process of machining, as well as the material removal mechanism are analyzed. The effects of cutting velocity and feed per tooth on the surface quality of the material are also analyzed. The effect of feed per tooth on subsurface damage is revealed. The results show that in the micro-milling of SiCp/Al2024 composites, the particle removal form is mainly crushing and extraction. The surface defects of the workpiece mainly include pits, scratches, cracks, and extrusion damage. When the cutting velocity increases, the surface defects gradually change to crack, which can improve the surface quality of the workpiece. Increasing the feed per tooth will increase the surface defects of the workpiece and lead to poor surface quality. When the feed per tooth increased from 0.428 µm to 0.714 µm, the subsurface damage thickness increased from 35.2 µm to 47.3 µm.

Funder

National Natural Science Foundation of China

Doctoral Start-up Fund of Liaoning Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3