A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine

Author:

Wong Pak Kin1,Zhong Jian-Hua1,Yang Zhi-Xin1,Vong Chi Man2

Affiliation:

1. Department of Electromechanical Engineering, University of Macau, Macao

2. Department of Computer and Information Science, University of Macau, Macao

Abstract

This paper proposes a new diagnostic framework, namely, probabilistic committee machine, to diagnose simultaneous-fault in the rotating machinery. The new framework combines a feature extraction method with ensemble empirical mode decomposition and singular value decomposition, multiple pairwise-coupled sparse Bayesian extreme learning machines (PCSBELM), and a parameter optimization algorithm to create an intelligent diagnostic framework. The feature extraction method is employed to find the features of single faults in a simultaneous-fault pattern. Multiple PCSBELM networks are built as different signal committee members, and each member is trained using vibration or sound signals respectively. The individual diagnostic result from each fault detection member is then combined by a new probabilistic ensemble method, which can improve the overall diagnostic accuracy and increase the number of detectable fault as compared to individual classifier acting alone. The effectiveness of the proposed framework is verified by a case study on a gearbox fault detection. Experimental results show the proposed framework is superior to the existing single probabilistic classifier. Moreover, the proposed system can diagnose both single- and simultaneous-faults for the rotating machinery while the framework is trained by single-fault patterns only.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3