Multiobjective optimization of a tubular pump to improve the applicable operating head and hydraulic performance

Author:

Zhao Wenlong12,Zhang Jian12,Yu Xiaodong12,Zhou Daqing3,Calamak Melih4

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Jiangsu Province, China

2. Cooperative Innovation Center for Water Safety & Hydro Science, Hohai University, Jiangsu Province, China

3. College of Energy and Electrical Engineering, Hohai University, Jiangsu Province, China

4. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, SC, USA

Abstract

Tubular pumps are widely used in irrigation and water conveyance projects. However, the operating head of most of these pumps is low, and only a few studies have focused on the design of an efficient tubular pump with a head more than 5 m, which is common in long-distance water supply projects. This work aims to improve the operating head and efficiency of tubular pumps while maintaining a low shaft power. The multi-objective orthogonal optimization method was used to determine the critical parameters of the tubular pump, i.e., blade number, airfoil, blade thickness and guide vane distance, and nine design schemes were selected. Next, by using computational fluid dynamics (CFD), a 3D model of the tubular pumps under different schemes was established, and the results were compared. Subsequently, the range method and weighted matrix method were utilized to find the optimized scheme. In addition, an experimental investigation was performed to verify the simulation and the performance of the designed tubular pump. The results indicated that the optimized scheme improved the operating head to 6.9 m with higher efficiency of 84.2% and a lower shaft power of 27.7 kW. The modeling results were in agreement with the experimental measurements, and the designed tubular pump had a wide range of high-efficiency zones.

Funder

National Natural Science Foundation of China

the Postgraduate Research & Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3