Design approach for maximising contacting filament seal performance retention

Author:

Jahn Ingo HJ1

Affiliation:

1. Center for Hypersonics, School of Mechanical and Mining Engineering, The University of Queensland, Australia

Abstract

Good sealing is a key requirement for modern efficient turbomachinery such as steam and gas turbines. A class of seals that promise better performance, compared to conventional labyrinth seals, are contacting filament seals such as brush, leaf, or finger seal. When new, these filament seals offer better performance; however, if poorly designed they wear excessively, resulting in leakages higher than a comparable labyrinth seal. This paper outlines a design methodology for selecting ideal contacting filament seal properties for a given operating cycle or set of operating cycles. Following this approach ensures the seal performs well, the seal retains its performance, and performance is retained if the operating cycle is altered. In the approach, the seals are described by four generic properties (stiffness, blow-down, cross-coupling, and build clearance), which are then used for a performance evaluation based on a number of test cycles. Once the ideal seal properties for a given operating cycle have been identified, a seal to match these can be designed. The approach is evaluated with a generic gas turbine cycle and recommendations for ideal contacting filament seal properties for this cycle are made.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference14 articles.

1. Wear of seal materials used in aircraft propulsion systems

2. High-Speed, High-Temperature Finger Seal Test Results

3. Jahn IH, Franceschini G, Gillespie DRH, Improved understanding of negative stiffness in filament seals. under review.

4. Brush Seal Temperature Distribution Analysis

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3