Prediction of residual clamping force for Coulomb type and Johnsen–Rahbek type of bipolar electrostatic chucks

Author:

Wang Kesheng1ORCID,Lu Yijia1,Cheng Jia1,Ji Linhong1

Affiliation:

1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China

Abstract

As a key component in semiconductor manufacturing equipment, electrostatic chuck is conventionally divided into Coulomb type and J–R type depending on the generating mechanism of clamping force. After supply voltage is cut off, residual clamping force usually remains and becomes a serious issue for production efficiency and process reliability. Hence, it is significant to propose a general prediction model and reveal changing laws of residual force with time for both types. This paper establishes an equivalent circuit model for a bipolar electrostatic chuck containing distributed embosses on dielectric layer surface, and deduces a unified form of mathematical expression describing decaying force, which can cover the two types. The obtained equations can also predict steady force in working state. Furthermore, an experimental method for measuring clamping force and de-clamping time is presented. The results indicate relative deviations tend to decrease as voltages rise. It is found that prediction precision for J–R type is lower than that for Coulomb type. Main reasons are explained and relevant mechanisms are discussed. Overall, the calculations coincide with the measurements within an acceptable error range. The comparisons suggest the theoretical model is effective for simulating the characteristics of residual clamping force for both types of electrostatic chucks.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3