Microstructural and wear properties of iron slag reinforced aluminum alloy (LM30) based composite prepared through a stir casting method

Author:

Singh Harvir1,Gupta Aayush1ORCID

Affiliation:

1. Functional Materials Lab, Department of Mechanical Engineering, GLA University, Mathura, Uttar Pradesh, India

Abstract

Aluminum alloys are widely used in various industries due to their as low density, high strength-to-weight ratio, and good corrosion resistance. However, their wear resistance is often inadequate for certain applications. Utilization of industrial waste materials, such as iron slag, as reinforcement in aluminum alloy matrix composites offers a sustainable approach to material development and waste management. The utilization of industrial waste materials for aluminum alloy matrix composite fabrication offers a waste utilization to material development. The loading of this reinforcement varied from 0 to 15 wt.% and different particle size range (220-140, 140-70, and 70-0 µm). A microscopic analysis indicated that the iron slag particles are spread uniformly inside the metallic matrix. There is also a reduction in the size of primary silicon, as well as morphological changes (acicular to globular shape). The wear behavior was calculated using a pin-on-disk wear set up in accordance with ASTM G99 standard. The composites were employed to dry sliding wear test under various operating conditions such as applied pressure (0.2–1.4 MPa), and sliding distance (0–3000 m). The 15F composite outperformed all other composite samples in terms of wear rate under all working conditions. When compared to the base alloy, it demonstrated a remarkable 67% drop in steady state wear rate. The enhancements in wear performance for the 15F composite were attributed to the effects of Fe slag reinforcement. The inclusion of iron slag particles induced strong interfacial bonding between matrix and reinforcement particles improving the durability of the mechanical mixed layer developed during relative motion. Importantly, the wear rate parameters of the 15F composite were similar to those of the brake drum material used in commercial applications. This emphasizes the composite suitability for usage in a variety of automobile components.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3