Flutter prediction of cylindrical sandwich panels with saturated porous core under supersonic yawed flow

Author:

Akbari Hamzeh1,Azadi Mohammad1,Fahham Hamidreza1

Affiliation:

1. Depratment of Mechanical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran

Abstract

Supersonic flutter characteristics of cylindrical sandwich panels made of a saturated functionally graded porous (FGP) core and two homogeneous face sheets are studied in this paper based on the Biot’s poroelasticity theory. The third-order shear deformation theory (TSDT) is used to model the panel and the piston theory is hired to estimate the aerodynamic pressure create by the supersonic fluid flow. First, the set of the governing equations are solved numerically via generalized differential quadrature method (GDQM) and natural frequencies are calculated for various boundary conditions. Then, convergence of the solution is confirmed and its accuracy is demonstrated by comparing the results with those reported by other authors. Finally, the effects of geometrical parameters of the panel, thickness of the porous core, porosity distribution pattern, porosity parameter (size of pores), compressibility of pore fluid and yaw angle (fluid flow direction) on the flutter boundaries of FGP sandwich panels are investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3