Research on Seawater Hydraulic Internal Ball Gear Pump

Author:

Yang Yousheng1,Zhang Meng1,Yankey Richmond Polley1,Wong Pak Kin2

Affiliation:

1. College of Engineering, Ocean University of China, Qingdao, China;

2. Department of Electromechanical Engineering, University of Macau, Taipa, Macau

Abstract

With high demands for novel technologies in the marine mechatronic instrumentality and the limitations of the present hydraulic pumps, a novel bidirectional seawater hydraulic internal ball gear pump is proposed to accomplish the function of fluid power transmission and control. The proposed hydraulic pump can be used for hydraulic buoyancy control systems of underwater vehicles and different marine mechatronic equipment. In this paper, the model, the meshing and the flow characteristics of the internal ball gear pump are developed. The radial unbalance force of the pump, leakage, and flow pulsation are also analyzed. The new type of eccentric shaft-hole rotary sealing designed in this paper can eliminate axial leakage and is expected to improve volumetric efficiency, working pressure, and power density. Simulation and experimental results show that: (1) by using the concave/convex ball gears rather than the existing gears, the concave ball gear drives the convex ball ring to rotate, realizing energy transfer and conversion; (2) compared with the water hydraulic internal gear pump, the internal ball gear pump has excellent performance. Experimental results also show that when the speed is 1500 rpm, the maximum operating pressure can reach 7 MPa. At 2 MPa, its volumetric efficiency and flow can reach 75% and 0.189L/min, respectively. The outcomes of this study show that the proposed seawater hydraulic internal ball gear pump is effective and has a lot of potential.

Funder

Key Research and Development Plan of Shandong Province of China

Natural Science Foundation of Shandong Province of China

Science and Technology on Underwater Vehicle Technology Research Fund

National Natural Science Foundation of China

National College Student Innovation and Entrepreneurship Training Program

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance reliability evaluation of high‐pressure internal gear pump;Quality and Reliability Engineering International;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3