Dynamic response and time-variant reliability analysis of an eight-rod shock isolator

Author:

Liu Hui-Zhen1,Huang Xian-Zhen12ORCID,Yan Ming3,Chang Miao-Xin1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

2. Key Laboratory of Vibration and Control of Aero-Propulsion Systems Ministry of Education of China, Northeastern University, Shenyang, China

3. School of Mechanical Engineering, Shenyang University of Technology, Shenyang, China

Abstract

The operation of a warship is commonly affected by shock loads in different directions during sailing in a rough sea, which can decrease the precision of the shipboard equipment. To improve the shock resistance performance of the shipboard equipment, an isolator is usually installed to isolate it from the vibration of the ship deck. The paper proposes a method for dynamic response and time-variant reliability analysis of an eight-rod shock isolator (ERSI). ERSI has a novel symmetrical structure, which can improve the utilization of the isolation rods compared with the classical parallel mechanism. The isolator is modeled using Denavit-Hartenberg (D-H) convention and screw theory. Then, Duhamel integral is employed to derive the dynamic response to the isolator after decoupling the governing equation using the modal analysis method. Considering impacts of uncertain factors, this paper also presents a practical method for time-variant reliability analysis of ERSI. Finally, a discussion of the practical example of this method along with a detailed analysis to evaluate the efficiency of the proposed method is presented.

Funder

the National Natural Science Foundation of China

Fundamental Research Funds

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3