Dynamic vibratory motion analysis of a multi-degree-of-freedom torsional system with strongly stiff nonlinearities

Author:

Yoon Jong-yun1,Lee Hyeongill2

Affiliation:

1. School of Mechanical and Automotive Engineering, Kyungil University, Kyung-Sahn, Korea

2. School of Automotive Engineering, Kyungpook National University, Gyeongsang-Daero, Sangju, Gyeongsangbuk-do, Korea

Abstract

Physical driveline systems have inherent nonlinearities such as multiple piecewise linear springs, gear backlashes, and drag torques. The multi-staged clutch dampers, in particular, cause severe problems in simulating the nonlinear dynamic behaviors of multi-degree-of-freedom systems. In order to analyze the nonlinear dynamic behaviors of the system, the harmonic balance method has been employed. This study suggests a method to overcome the convergence problems with strong nonlinearities by employing two distinct smoothening factors for stiffness and hysteresis. First, the dynamic behaviors of the multi-degree-of-freedom torsional system are investigated by employing multi-staged clutch dampers subjected to a sinusoidal excitation. Second, the effects of system parameters are examined with respect to dynamic characteristics of torsional vibration. The regimes of resonance frequencies along with the relevant parameters of the system are investigated by calculating backbone curves, which reduce the calculation time significantly. In order to validate harmonic balance method simulation, the simulated results are compared with those of numerical simulation. Harmonic balance method is shown to be more efficient than numerical simulation in calculating the nonlinear frequency response, as well as in simulating the steady-state responses without transient response effect.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3