A new quick-stop device to study the chip formation mechanism in metal cutting: Computational and experimental investigation

Author:

Mhamdi Mohamed Baccar1,Rajhi Wajdi23,Boujelbene Mohamed2,Salem Sahbi Ben4,Ezeddini Sonia5,Amara Mouldi Ben6

Affiliation:

1. Mechanical, Production and Energy Laboratory (LMPE), National School of Engineering of Tunis (ENSIT), University of Tunis, Tunis, Tunisia

2. College of Engineering, University of Hail, Hail, Kingdom of Saudi Arabia

3. Laboratoire de Mécanique, Matériaux et Procédés LR99ES05, Ecole Nationale Supérieure d'Ingénieurs de Tunis, Université de Tunis, Tunis, Tunisia

4. University of Carthage, IPEI, Campus University, Nabeul, Tunisia

5. School of Mechanical and Manufacturing Engineering, Supmeca Institute of Mechanics of Paris, Saint-Ouen, France

6. Community College, University of Hail, Hail, Kingdom of Saudi Arabia

Abstract

Understanding the chip formation mechanisms during machining is an important factor to facilitate the choice of cutting tools and machining parameters. Despite the appearance of new sophisticated methods and advanced equipment, the technique so called quick-Stop Test (QST) remains efficient, less costly, and easier to apply in the investigation of chip formation in cutting process. In present paper a new Quick-Stop Device QSD is designed, numerically simulated, implemented, and tested. The reformed QST technique uses a QSD device which operates on the modified Charpy pendulum. Accordingly, design of new QSD is presented and deeply described, and 2D FE modeling of the new QST, including the application of the appropriate boundary conditions, has been carried out. Moreover, chip formation and morphology for different cutting conditions have been effectively simulated. Subsequently, quick stop cutting operations including metal cutting tests of high alloyed tool steel (AISI D2) using fabricated new QSD are performed. Preliminary results of quick-stop experiment from current investigation prove the effectiveness of the new designed QSD in matter of rigidity, safety, and absence of vibration, while providing a fast set up time and allowing extremely short workpiece-cutting tool separation time and guarantee the generation of chip with its root. The photomicrographs of chip root samples gathered from hard metal cutting experiments including various cutting speeds machining conditions, enables clear observation of segmented chip formation mechanisms, thereby, highly promising the new designed QSD for the purpose of investigation of the different cutting parameters influencing the chip formation and morphology.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Determination of the Shear Angle in the Orthogonal Cutting Process;Journal of Manufacturing and Materials Processing;2022-10-28

2. Estimation of MRR and thermal stresses in EDM process: a comparative numerical study;The International Journal of Advanced Manufacturing Technology;2022-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3