Effects of inductor patterns on temperature and deformation behavior of ship hull plate by induction heating

Author:

Zhang Shuiming12,Liu Cungen12ORCID,Wang Xuefeng12,Yang Zhi12

Affiliation:

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai, China

Abstract

This paper mainly investigated the effects of different inductor patterns on thermal forming behavior of ship hull plate by moving induction heating. Alternately-coupled electromagnetic-thermal analysis procedure considering temperature-dependent material properties was firstly implemented at each moving step of inductor, followed with uncoupled thermal-mechanical transient analysis to obtain corresponding thermal deformation. Then temperature distribution, dimensions (breadth b and depth h) of heat-affected zone, and deformation obtained from codirectional current-carrying inductor with no gap and opposite-direction current-carrying inductor with gap were compared, respectively. And effects of heating directions and distance T2 of ODIG were also analyzed. It turns out that codirectional current-carrying inductor with no gap can generate much larger transverse shrinkage at 1.8–2.5 mm/s than opposite-direction current-carrying inductor with gap, otherwise smaller at 3.2–4.0 mm/s, likewise larger temperature gradient at 1.8–4.0 mm/s and thus larger bending angular deformation. Besides, heating direction “Out” can generate larger deformation than “In” and deformation for opposite-direction current-carrying inductor with gap can be effectively improved through adjusting distance T2 until 13 mm. These indicate that adopting appropriate inductor patterns, heating direction and distance T2 of opposite-direction current-carrying inductor with gap can significantly improve thermal forming behavior.

Funder

Research Project of State Key Laboratory of Ocean Engineering, Development of Intelligent Machining Robot for Large Curvature Ship Plate

National Key Basic Research and Development Program

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical and experimental study of electromagnetic induction heating process for bolted flange joints;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3