Affiliation:
1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai, China
Abstract
This paper mainly investigated the effects of different inductor patterns on thermal forming behavior of ship hull plate by moving induction heating. Alternately-coupled electromagnetic-thermal analysis procedure considering temperature-dependent material properties was firstly implemented at each moving step of inductor, followed with uncoupled thermal-mechanical transient analysis to obtain corresponding thermal deformation. Then temperature distribution, dimensions (breadth b and depth h) of heat-affected zone, and deformation obtained from codirectional current-carrying inductor with no gap and opposite-direction current-carrying inductor with gap were compared, respectively. And effects of heating directions and distance T2 of ODIG were also analyzed. It turns out that codirectional current-carrying inductor with no gap can generate much larger transverse shrinkage at 1.8–2.5 mm/s than opposite-direction current-carrying inductor with gap, otherwise smaller at 3.2–4.0 mm/s, likewise larger temperature gradient at 1.8–4.0 mm/s and thus larger bending angular deformation. Besides, heating direction “Out” can generate larger deformation than “In” and deformation for opposite-direction current-carrying inductor with gap can be effectively improved through adjusting distance T2 until 13 mm. These indicate that adopting appropriate inductor patterns, heating direction and distance T2 of opposite-direction current-carrying inductor with gap can significantly improve thermal forming behavior.
Funder
Research Project of State Key Laboratory of Ocean Engineering, Development of Intelligent Machining Robot for Large Curvature Ship Plate
National Key Basic Research and Development Program
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Numerical and experimental study of electromagnetic induction heating process for bolted flange joints;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2021-05-17