Influence of system parameters on buckling and frequency analysis of a spinning cantilever cylindrical 3D shell coupled with piezoelectric actuator

Author:

Shokrgozar Ali1,Safarpour Hamed2ORCID,Habibi Mostafa3ORCID

Affiliation:

1. Department of Civil and Environmental, Idaho State University, Pocatello, ID, USA

2. Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran

3. Center of Excellence in Design, Robotics and Automation, School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this research, buckling and vibrational characteristics of a spinning cylindrical moderately thick shell covered with piezoelectric actuator carrying spring-mass systems are performed. This structure rotates about axial direction and the formulations include the Coriolis and centrifugal effects. In addition, various cases of thermal (uniform, linear, and nonlinear) distributions are studied. The modeled cylindrical moderately thick shell covered with piezoelectric actuator, its equations of motion, and boundary conditions are derived by the Hamilton's principle and based on a moderately cylindrical thick shell theory. For the first time in the present study, attached mass-spring systems has been considered in the rotating cylindrical moderately thick shells covered with piezoelectric actuator. The accuracy of the presented model is verified with previous studies. The novelty of the current study is consideration of the applied voltage, rotation, various temperature distributions, and mass-spring systems implemented on proposed model using moderately cylindrical thick shell theory. Generalized differential quadrature method is examined to discretize the model and to approximate the governing equations. In this study, the simply supported conditions have been applied to edges [Formula: see text] and cantilever (clamped–free) boundary conditions has been studied in x = 0, L, respectively. Finally, the effects of the applied voltage, angular velocity, temperature changes, and spring-mass systems on the critical voltage, critical angular speed, critical temperature, and natural frequency of the structure are investigated.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3