Affiliation:
1. Computational Fluid Dynamics Laboratory, Kalasalingam Academy of Research and Education, Krishnankoil, India
Abstract
Motivated by the requirement to lessen the aerodynamic drag and aeroacoustic sound of the bluff bodies, the present paper is devoted to a numerical analysis of the aerodynamics and aeroacoustics related with the flow past wavy circular cylinders. Based on the efficient flow control method, as has been presented by preceding researchers, the existing work embarks upon an investigation on the wavy cylinder at a various wavelength and amplitude conditions. Computations are performed for a circular cylinder of the length-to-diameter ratio ( L/ D) of 25 at a Reynolds number ( Re) of 97300 using large eddy simulation and Ffowcs Williams- Hawking’s acoustic analogy. Firstly, the cylinder without waviness is subjected to a uniform incoming flow is considered for validation against measurements. Secondly, various collection of wave shape parameters, specifically dimensionless wavelength λ/ D (=1 to 2.5), and wave amplitude a/ D (=0.05 to 0.2) have been taken into consideration. It is disclosed that the proper selection of shape parameters could significantly reduce the drag and sound emission levels, compared to the normal cylinder. Finally, a multi-objective particle swarm optimization was performed using the radial basis neural network to simultaneously reduce the aerodynamic drag and sound emission, with λ/ D and a/ D as design variables. We recognized a critical λ/ D and a/ D for the wavy circular cylinder at the considered subcritical Re.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献