Investigation on runner resonance and fatigue life of a high–head pump–turbine

Author:

Li Deyou12ORCID,Duan Xueqing2,Yue Ning2,Gong Ruzhi2ORCID,Wang Hongjie2ORCID,Qin Daqing1,Wei Xianzhu1

Affiliation:

1. State Key Laboratory of Hydro–Power Equipment; Harbin Electric Machinery Company Limited; Harbin Institute of Large Electrical Machinery, Harbin 150040, China

2. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

The structural stability and fatigue of the runner of a high-head pump-turbine was explored by conducting a numerical simulation of the entire flow passage under different working conditions. A two-way fluid-structure interaction calculation method was used, which captured the values for 5.75 fn, 9 fn, 13 fn, 18 fn, and 20 fn ( fn is rotational frequency) in pressure fluctuation. The resonance of the runner was compared with the results of the modal analysis. The rain flow and damage accumulation methods were used to predict the fatigue life. The study found that the 13 fn pressure fluctuation of the fluid in the flow passage of the pump-turbine is the primary cause of the resonance of the runner blade. The main frequency of vibration is the third natural frequency of the runner. The vibration form is up and down along the Z–axis, and there are some high-order resonances. The most vulnerable part of the entire runner is located at the T-shaped connection between the blade inlet edge and the runner crown and bottom ring. The excitation force under the small flow condition is more complicated than that under the large flow condition, which is more likely to cause fatigue damage to the runner. In addition, the damage extent of the high-stress amplitude to the runner is obviously greater than the influence of the number of stress cycles, accounting for approximately 60% of the total damage. The research results can provide a reference for the operational stability and life prediction of a high-head pump-turbine runner.

Funder

Foundation of State Key Laboratory of Hydro-power Equipment

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3